Rotman School of Management RIT User Guide

128 58

» UNIVERSITY OF TORONTO Build 1.00

RIT REST API Tutorial

Table of Contents
INEFOTUCTION ...ttt b bt e st e et en b e e Rt e bt e st e ebe et e e neesbeenbeeneenreas 2
PYtNON/ENVIFONMENT SEEUDveivieitieieee ettt sttt sttt et enes 3
Rotman Interactive Trader INSTAIL ..o e 3
IR =0 1 o SO SRRSO 3
YT T D TESY 1 o0 o o SR 3
Verifying Your INStAHALIONcoi it et ra e e e s reenaenre s 3
Python Virtual ENVIFONMENTS.ouiiiiieiiieese ettt sttt sseestesee s e sreeneeneesneeneennas 5
INErOdUCEION 1O PYINON ...ttt e e e snaenaeennenres 7
Create 8 WOTK DITECTOIYc.eiiiiiieiiiiiit ettt b b nn e n e eneereas 7
[=] Lo TR Yo o o ST 7
HEIIO INPUL ..ot b bbb bt e et b b b e 8
MathematiCal EXPIESSIONSvcviiieie ettt et st te e et e teesaesteenaesbeeneenee e 11
Tuples, Lists, and DICHIONAIIES.ccveiiiieie ettt st e s te e e sbeeneesbesneeneenrs 11
IS0 1011 T Y TSRS 12
Using Pandas/NumPy Package — Stock Returns EXample ..., 13
RUNNING the PYLhON INEEIPIETENeitiiecie ettt sttt e sre e sbeene e e 13
IMPOITING PACKAGES. ... cveiviceieite ettt sttt e st et e et e sbeesaesteeneestesseeeeneas 13
Reading IN Data FrOM CSV ...ttt ettt sttt et e et s e seesneeneeseeenee e e 14
DALAFTAIMES ...ttt b e h e he e et b e oo b £ e e b e e shb e eE b e e h b e e Rt e e ke e ebe e ehe e ean e e be e ebe e nbeenbnenneas 15
Viewing Data From DataFTAMESccoiioieiiiieie sttt sttt sae e seesteeneentesneeneeneas 15
Manipulating Data IN DAtaFTAMESoiiieieeie e eie et e sttt ste e aeste e e sbeeseeseeseeeneeseeereenee e 17
Y0101 1 = Y PP 20
Introduction t0 the RIT REST AP ...t e 21
SEHHNG UP PYINON ...ttt et e st e ae et e s ae e st e bestaesaesteeneenre s 21
BaSIC USE ...t bR b b et Rt R e bt bbb e e ere s 21
g oTo g LT NN (0] SRRSO 22
SUDMITEING OFUBIS ... ettt ettt ettt e te et e eeseeeseesaeemeentesaeeneenbeaseeseeseeeneennens 22
(08 TaTo0c] 1100 O o LT USSR 24
Algorithmic Trading EXample — ArbItrage.......c.coveeiieii e 26
BASIC SEUUD. ...t E ettt b n e n e 26
F AN g o= Yo TN a0 | oSSR 27
RUNNING the ATGOITTNM ..ottt et e re e sbeere e e e 29

Copyright © 2018, Rotman School of Management. No part of this publication may be reproduced, stored in a retrieval system,
used in a spreadsheet, or transmitted in any form or by any means - electronic, mechanical, photocopying, recording or
otherwise — without the permission of Rotman School of Management.

Introduction

The Rotman Interactive Trader (RIT) allows users to query for market data and submit trading
instructions through a REST API, as well as through a Microsoft Excel VBA-specific API. The purpose
of this is to allow for program or 'algorithmic' trading, where the computer executes trades based on
a pre-defined set of instructions or parameters.

This tutorial focuses on interacting with the REST API, which allows a language-agnostic way for
programs to interact with the RIT. In effect, most programming languages capable of submitting
HTTP requests to a pre-defined web address will be able to interact with the RIT. Specifically, this
tutorial will use Python, as it is a general-purpose language that is commonly used in the data
science/finance domains. This tutorial assumes no previous knowledge of Python, and provides an
introduction to the concepts of programming, Python, and data manipulation before introducing
users to the RIT REST API and an in-depth example of an algorithmic arbitrage trading strategy.
Those users who are already familiar with Python or interacting with a REST API through their
language of choice should skip to the Introduction to the RIT REST API section, or to the detailed
documentation available through the RIT Client.

This tutorial does not discuss the strategies behind algorithmic trading. Rather, it introduces the user
to the tools that are available through the RIT REST API. Users are encouraged to explore possible
strategies and techniques and use the building blocks here to implement them.

Copyright © 2018, Rotman School of Management. 2

Python/Environment Setup

Note: this tutorial is for individual users working with Python/the RIT on their own computers. For
mass Python/the RIT deployments, please contact your local IT administration.

Rotman Interactive Trader Install

The Rotman Interactive Trader Client download and install information is available here. To use the
RIT REST AP], only the Client is required. To use the Microsoft Office Excel RTD links/VBA API (not
used in this tutorial), the RTD links toolkit is also required (available from the same link above).

Text Editor

A text editor like Notepad, Notepad++, Notepad2, Atom, etc. is required to write and save the Python
code presented in the tutorial into .py files. Notepad is already available on all versions of Windows.
The recommended Anaconda/Miniconda installers (next section) include the option to install
VSCode, another text editor from Microsoft.

Python Distribution

The recommended way to set up your Python environment/workspace is to use either the Anaconda
distribution or the Miniconda distribution of Python 3.6+

Anaconda already includes many of the most commonly used data science packages (essentially
additional tools) like NumPy (support for multidimensional arrays) and Pandas (easy to use data
structures and tools for data analysis), as well as a package and virtual environment manager.
Miniconda only contains the package and virtual environment manager, and users can manually
decide on which packages to download and install for use.

Note: when installing Anaconda or Miniconda, choose to leave the option 'Add Anaconda to my PATH
variable' unchecked, and the option 'Register Anaconda as my default Python 3.x' checked

Verifying Your Installation

After installing Anaconda or Miniconda, please open the 'Anaconda Prompt' from the Start Menu, or
the Command Prompt/PowerShell if you are using a different Python distribution.

A
Alarms & Clock

. Anaconda3 (64-bit)

"] Anaconda Prom pt

— JUPYTEr MOTEDOOK \rotmany)

= New

x Avast Free Antivirus

This should open a window looking similar to the following, with 'jregc’ being replaced by your user
ID. This tutorial will refer to this window as 'the prompt' from here onwards.

Copyright © 2018, Rotman School of Management. 3

http://rit.rotman.utoronto.ca/software.asp
https://notepad-plus-plus.org/
http://www.flos-freeware.ch/notepad2.html
https://atom.io/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://conda.io/miniconda.html
https://github.com/jregchiu/frtl-python/blob/master/guides/photos/start_menu_prompt.png
https://github.com/jregchiu/frtl-python/blob/master/guides/photos/start_menu_prompt.png
https://github.com/jregchiu/frtl-python/blob/master/guides/photos/start_menu_prompt.png

B Anaconda Prompt — O ot

(base) C:\Users\jregc»

Type python --version into the prompt and press enter. This command asks Python for its
current version number. The output should look similar to the following if everything has been
installed correctly, where the version number is 3.6 or greater.

B Anaconda Prompt — O ot

thon --version
Inc.

(base) C:\Users\jregc>

Then typeconda --versioninto the prompt and pressenter. This command asks
Anaconda/Miniconda for its current version number. The output should look similar to the following
if everything has been installed correctly, where the version number is 4.5 or greater. In the case
where the version number is lower than 4.5, type conda update -n base conda to get the latest version.

Copyright © 2018, Rotman School of Management. 4

B Anaconda Prompt — O x

se)
Python 3

EE
conda 4.5.2

(base) C:\Users\jregc»

Python Virtual Environments

Anaconda and Miniconda come with the conda package and virtual environment manager. Different
Python applications that users write may require different files and packages, and virtual
environments help solve this problem. A virtual environment is a self-contained
environment/directory that contains its own files, installed packages, and their dependencies that
will not interact with other environments' files, packages, and dependencies.

When a user initially starts the prompt, it starts in the 'base’ environment, as indicated on the left
side of the prompt.

B Anaconda Prompt — O ot

(base) [C:\Users\jregc»

However, it is not recommended to install additional packages in the 'base’ environment. To create a
new environment, enter conda create --name <ENV NAME> pandas numpy matplotlib
requests. This will create a new virtual environment, with the name supplied in <ENV NAME>, and
with the 'pandas’, 'numpy’, ‘matplotlib’, and 'requests' packages needed in this tutorial, plus any
dependencies for those packages.

Copyright © 2018, Rotman School of Management. 5

B Anaconda Prompt — O x

(base) C:° ‘rotman-tutorial>conda create --pame rotman-tutorial pan
das numpy matplotlib requests

In this case, the virtual environment is named 'rotman-tutorial’. Entery into the prompt
after conda lists the packages that must be downloaded and installed to proceed and create the
environment. After the environment is created, enter conda activate <ENV NAME> or
simply activate <ENV NAME> into the prompt to switch the context of the prompt to that
environment.

B Anaconda Prompt — O ot

(base) C:\Users\jreg onda activate rotman-tutorial

{ rotman-tutorial) |C:\Users\jregc>

As shown in the above screenshot, after entering conda activate rotman-tutorial into the
prompt, the prompt indicates that the current environment is 'rotman-tutorial’. If a user wants to
deactivate the current environment and go back to the ‘base’ environment, enter conda
deactivate.

Copyright © 2018, Rotman School of Management. 6

Introduction to Python

Create a Work Directory

In the local user directory, create a work directory to store the tutorial files. Users can do this from
the prompt by entering mkdir <WORK DIR NAME> to create adirectory inthe currentlocation. Then,
enter cd <PATH TO WORK DIR> to change locations to that directory.

B Anaconda Prompt — O x

{rotman-tutorial) C:\Users\jregc>mkdir rotman-tutorial

{rotman-tutorial) C:\Users\jregc>cd rotman-tutorial

{rotman-tutorial) C:\Users\jregcirotman-tutorial:>

In the above screenshot, a directory called 'rotman-tutorial' was created in the
directory C: \Users\jregc

Hello World

Open your preferred text editor, type the following into a new file, and save the file in the work
directory as hello_world.py

def main():
print('Hello world!")

this if-block tells Python to call the main() method when it runs the file
from the prompt

if name_ == "'_ main__ ':
main()

Then in the prompt, enter python hello_world.py.

Copyright © 2018, Rotman School of Management. 7

B 4naconda Prompt — O ot

{rotman-tutorial) C:\Usersijr \rotman-tutorial>python hello world.py
Hello world!

{rotman-tutorial) C:\Users\j \rotman-tutorial:>

This command tells Python to run the file in the local directory called hello_world.py. Inside that
file, there is a method called main that calls the print method. The print method takes in the text
'Hello world' as a parameter and prints it out to the prompt as Hello world!.

In case the prompt window size needs to be changed, right-click on the top module bar from the
prompt window, choose “Properties”, click on “Layout”, and change “Width” under “Window Size” to
display any contents properly.

B Anaconda Prompt B "Anaconda Prompt” Properties *
Restore

Options Fort J| Layout W Colors

Mawve

= Screen Buffer Size Window Preview
Minimize Width: 32 B

Maximize Height: @ 2
Close Wrap text output on resize

Edit Window Size

Defaults Width- E =

Properties ;ag;: ;; hd

Window Position
Left: 30

ERLANIEN

Top: 272

Let system position window

Hello Input

Python can also take in user input. For example, try saving the following into a file called
hello_world2.py and running it:

def main():
name = input('Please enter your name: ')
print('Hello', name)

print('Goodbye' + name + '!")
if name_ == "'_ main__ ':
main()

Copyright © 2018, Rotman School of Management. 8

This time, a prompt should be displayed, asking for your name. In effect, the first line of code tells
Python to print to the prompt the text Please enter your name:, wait for an input to be typed in,
and then save that input into the variable called name. The second line then tells Python to
printHello and the value saved in the variable name. The third line shows another way of
combining text together to be printed out.

B Anaconda Prompt — O x

{(rotman-tutorial) C:\Users\jregc\rotman-tutorialspython hello world2.py
Please enter your name: Jerem

Hello Jeremy

GoodbyeJleremy !

{rotman-tutorial) C:\Users\jregc\rotman-tutorial:

But if you look at what's displayed on the third line of the output, it looks a little messy. Let's fix that:

def main():
name = input('Please enter your name: ')
print('Hello', name)

print('Goodbye ' + name + '!")
if name_ == "'_ main__ ':
main()

Note the space in the quoted text 'Goodbye .

Copyright © 2018, Rotman School of Management. 9

B Anaconda Prompt

{rotman-tutorial) Users\jregch\rotman-tutorial>python hello world2.py

Please enter your name: Jeremy
Hello Jeremy
Goodbyeleremy !

{rotman-tutorial) Users\jregch\rotman-tutorial>python hello world2.py

Please enter your name: Bill
Hello Bill
Goodbye Billl!

{rotman-tutorial) ! rehjres rotman-tutorial:»

There, that's better!

Copyright © 2018, Rotman School of Management.

10

Mathematical Expressions

Like many programming languages, Python can also perform mathematical calculations. Try saving
and running the following as math. py:

def main():
print('8 plus 2 equals:', 8 + 2)
print('9 minus 12 equals:', 9 - 12)
print('5 times 3 equals:', 5 * 3)
print('10 divided by 3 equals:', 10 / 3)
print('10 divided by 2 equals:', 10 / 2)
print('10 divided by 3 and rounded to an integer equals:', 10 // 3)
print('10 divided by 2 and rounded to an integer equals:', 10 // 2)
print('2 raised to the 7th power equals:', 2 ** 7)

if _name__ == "'__main__":
main()
B Anaconda Prompt — O >

(man-tutorial) C:\Users\jregc\rotman-tutorial»>python math.py
8 plus 2
9 minus

Note that there is a difference between integer and floating-point math, where floating-point
numbers are representations of real numbers including decimals.

Tuples, Lists, and Dictionaries

There are also three common data structures that are used in Python: tuples, lists, and dictionaries.
Tuples are comma-separated lists of values that cannot be changed once created, while lists are
comma-separated lists of values that can be changed. Dictionaries are lists of key/value pairs that are
associated with one another. In effect, the major difference is how to access values in the different
data structures: usually one will index by number to access values in tuples and lists, while one will
index by key to access a value in a dictionary. The following example illustrates how this works.

Copyright © 2018, Rotman School of Management. 11

def main():
t = (3, 5, 19, 9)
1l =18, 9, 5]
d = {'key': 'value', 'name': 'Bob'}

print('The first element in the tuple is', t[@])

print('The second element in the tuple is', t[1])
print('The third element in the 1list is', 1[2])

print('The "name" element in the dictionary is', d['name'])

if name_ == "'_ main__ ':
main()
B Anaconda Prompt — O x

{(rotman) C:\Users‘\jregc\rotman-tutorial-python data.py
The first element in the tuple is 3
The second element in the tuple is 5
The thid element in the list is 5

The "name” element in the dictionary is Bob

{(rotman) C:\Users\jregch\rotman-tutorial>»

Note that python uses 0-based indexing, such that the first element is at position 0, the second is at
position 1, etc.

Summary

This concludes a basic introduction to Python, necessary for the following sections on using
Pandas/NumPy for simple stock return calculations, as well as on using the RIT REST API. You should
now be able to write a simple set of instructions (a method) in Python, using a pre-defined method
(print) and execute it from the prompt.

For a more detailed introduction to Python, please see The Python Tutorial.

Copyright © 2018, Rotman School of Management. 12

https://docs.python.org/3/tutorial/

Using Pandas/NumPy Package — Stock Returns Example

Pandas is a commonly used open-source data analysis package for Python. It provides a
comprehensive set of easy-to-use data structures and analysis tools. We'll take a quick look at how
to use Pandas to read in CSV data from Yahoo Finance and perform some common calculations like
returns and summary statistics.

Instead of writing the code into a file and then running it via python <FILE NAME>.py, we'll use the
interactive Python interpreter available via the prompt. Note however that the code can also be saved
intoa .py file and run, as demonstrated in the Introduction to Python section.

Running the Python Interpreter

To run the Python interpreter, simply enter python into the prompt, first ensuring that the 'rotman-
tutorial' (or other) virtual environment is active and the prompt is in your working directory.

B 4naconda Prompt - python — O >

or "license” for more information.

As the screenshot shows, the Python interpreter is active, running Python version 3.6.5.
The >>> shows that we are in interactive mode, and can enter commands to be interpreted by
Python.

To exit the Python interpreter, enter the command exit().

Importing Packages
To import packages, either into a Python file or into the interpreter, type the following lines:
import pandas as pd

import numpy as np
import matplotlib.pyplot as plt

Copyright © 2018, Rotman School of Management. 13

{rotman-tutorial) C:\Usersijr
Python 3.6.5 |Anaconda, Inc.| () 2 13:32:41) [MSC v.1900@ 64

bit (AMD64)] on win3:
Type "help”, “copyright"”, "credi r "license"™ for more information.
import pandas as pd
import numpy as np
import matplotlib as plt

These three lines import the 'pandas’, 'numpy’, and 'matplotlib.pyplot' packages that we installed in

the 'rotman-tutorial' virtual environment which was set up in thePython Virtual
Environments section of the tutorial. Additionally, we create nicknames to reference them by ('pd’,
'np', and 'plt' respectively). The next section will show how to call methods from these packages.

Reading In Data From CSV

Let's get some data in the form of a CSV file to read. Go to Yahoo Finance, query an equity ticker, and
download a 1Y span of historical daily data. Save this CSV in your work directory, as set up in
the Create A Work Directory section.

In this tutorial, we're using Netflix (NFLX) historical data.

df = pd.read_csv('NFLX.csv")

B Anaconda Prompt - python — O >

{rotman-tutorial) C:\Users\j \
Python 3.6.5 |Anac , Inc.| ¢ 2 13:32:41) [MSC v.1988 64
bit (AMDG64)
Type "help”, “copyright"”, "credi r "license"™ for more information.
import pandas as pd

import numpy as np

import matplotlib as plt
df = pd.read csv({ NFLX.csv')

This command calls the read_csv() method available in the 'pandas’ package, passing in the filename
'NFLX.csv' as the parameter specifying the file to open and read in the same directory. Relative paths

Copyright © 2018, Rotman School of Management. 14

https://ca.finance.yahoo.com/

are also possible, for example pd.read_csv('data/NFLX.csv') would read a 'NFLX.csv' file
located in a subdirectory named 'data’.

After reading the data in from the CSV file, the read_csv() method returns it as a DataFrame object,
and the variable named df (for DataFrame) refers to that DataFrame object.

DataFrames

DataFrames are the primary data structure in Pandas, and can be thought of as two dimensional
tables with labeled axes, similar to how data is laid outina .csv or .x1ls/.xslx file in rows and
columns.

Viewing Data From DataFrames

df.dtypes

B Anaconda Prompt - python — O ot

» df.dtypes
object
floatea

B floatea
Low floated

Close floated

Adj Close floated

Volume inte4
ype: object

The dtypes attribute provides a list of the data types of each column.

df.head()

B Anaconda Prompt - python — O x

High

7. 161. 168686

2817-85-11 166.3386882 160.52680064
20917-85-12 159.1160601 160.] . c

2017-85-15 160.2500080 16] 166 .028684 1608.0826804

2017-85-16 160.560606 161.17999 158 2 159.416884 159.4160684

AL

o]

Copyright © 2018, Rotman School of Management. 15

The head() method display the first 5 rows in the DataFrame. A different number of rows to display
can be passed in as a parameter (for example df.head(10) would display the first 10 rows).

df.tail()

B Anaconda Prompt - python — O x
df.tail()

Open igh Lo Close Adj Close

2018-085-03 12 12 .58999% . 738011 11.696882 311.6986062

2818-85-84

20818-85-87 21. == 29 .81 1 19. 1996 26.260016

2018-85-08 25.899004 27 .350066 23. 26. 8006015

2018-085-09 28.79 o 1.958012

Volume

The tail() method displays the last 5 rows in the DataFrame. A different number of rows to display
can be passed in as a parameter (for example df.tail(20) would display the last 20 rows).

df.describe()

B Anaconda Prompt - python — O x
df.describe()
Open i Low Close
count 252. 25; 252 .poBoee 25

The describe() method calculates and displays some common sample statistics for the DataFrame's
columns, including the count, mean, standard deviation, min/max values, and quartiles. It skips NA
values.

df['Adj Close']

Copyright © 2018, Rotman School of Management. 16

B Anaconda Prompt - python — O ot
df["Adj Close’]

Display a column from the DataFrame, selected by label.

Manipulating Data In DataFrames

It's also possible to add new columns to a DataFrame and perform other calculations:

df['Daily Return'] = df['Adj Close'].pct _change()

df["16DMA'] = df['Adj Close'].rolling(window=10, center=False).mean()
df['30DMA'] = df['Adj Close'].rolling(window=30, center=False).mean()
summary = df.describe()

From the commands above, three additional columns (‘Daily Return’, ‘10DMA’, and ‘30DMA’) are
added to the DataFrame. The ‘Daily Return’ column is calculated by calling the pct_change() method,
which calculates the percentage change between each row in the ‘Adj Close’ column. The ‘10DMA’
and ‘30DMA’ columns are calculated by creating rolling 10-day or 30-day windows on the rows in
the ‘Adj Close’ column, and then calculating the mean on those windows.

Then the ‘summary’ variable is defined as ‘df.describe()’. As demonstrated in the previous section,

this method will display some common sample statistics whenever a user types ‘summary’ and hits
enter in the prompt.

Using the daily return values, a user can also calculate an annualized volatility. From the command
below, a standard deviation of the daily returns is first calculated and multiplied by the square root
of the number of trading days in a year.

annual vol = df['Daily Return'].std() * np.sqrt(df['Adj Close'].count())

A user can simply type in ‘annual_vol’ and hit enter in the prompt to query the calculated annualized
volatility.

Copyright © 2018, Rotman School of Management. 17

The to_csv() method allows a user to export the DataFrame to a csv file. Using the following sample
commands, a user can export the entire DataFrame as a csv file with a file name ‘NFLX_calculated.csv’
or just the summary part with a file name ‘NFLX_summary.csv’. The exported files will be made
available in the same directory.

df.to _csv('NFLX calculated.csv')
df.describe().to_csv('NFLX_summary.csv')

B Anaconda Prempt - python

Summary
sSummary

Copyright © 2018, Rotman School of Management. 18

NFLX_calculated.csv
Al =

A B
1 | _l[]ate
2 0 5/23/2017
3 1 5/24/2017
4 2 5/25/2017
5 3 5/26/2017
& 4 5/30/2017
7 5 5/31/2017
& 6 6/1/2017
] 7 6/2/2017
10 & 6/5/2017
11 9 6/6/2017
12 10 6/7/2017
13 11 6/8/2017
14 12 6/9/2017
15 13 6/12/2017
16 14 6/13/2017
17 15 6/14/2017
18 16 6/15/2017
19 17 6/16/2017
20 18 6/19/2017
21 19 6/20/2017
22 20 6/21/2017
23 21 6f22/2017
24 22 6f23/2017
25 23 6/26/2017
26 24 6f27/2017
27 25 6/28/2017
28 26 6/29/2017
29 27 6/30/2017
30 28 7f3f2017
31 29 7/5/2017
32 30 7/6f2017
33 31 7f7/2017
NFLX_summary.csv
Al =

A B
1 | _IGpen
2 |count 252
3 |mean 221.3164
4 |(std 59.79211
5 |min 146.13
i) 25% 179.4
T 50% 194.5
) 75% 281.235
g |max 336.3
10

Copyright © 2018, Rotman School of Management.

.f'l'-'
e D E F G H | 1 I
Open High Low Close Adj Close Volume Daily Retu10DMA 30DMA
157.75 158.31 156.8 157.95 157.95 3370900
158.35 153.48 157.17 157.75 157.75 2970800 -0.00127
161 164.1 160.55 163.05 163.05 8561000 0.033597
162.84 163.05 161.12 162.43 162.43 4834300 -0.0038
163.6 164.75 162.71 163.22 163.22 4828600 0.004364
163.61 164 160.74 163.07 163.07 5328500 -0.00092
163.52 163.93 161.7 162.99 162.99 3896300 -0.00049
163.42 165.36 162.8 165.18 165.18 4259100 0.013436
165.49 165.5 163.43 165.06 165.06 3875200 -0.00073
164.95 166.82 164.51 165.17 165.17 4382100 0.000666 162.587
165.6 166.4 164.41 165.61 165.61 3353100 0.002664 163.353
166.12 166.87 164.84 165.88 165.88 3695200 0.00163 164.166
166.27 166.27 154.5 158.03 158.03 10292000 -0.04732 163.664
155.3 155.53 148.31 151.44 151.44 14114500 -0.0417 162.565
154.38 155.68 150.13 152.72 152.72 8484700 0.008452 161.515
154.34 155.62 150.28 152.2 152.2 6461800 -0.0034 160.428
149.44 152.56 147.3 151.76 151.76 7319700 -0.00289 159.305
151.45 153.53 150.39 152.38 152.38 6509700 0.004085 158.025
154.29 155.58 152.41 153.4 153.4 6544300 0.0066594 156.839
153.68 154.5 151.4 152.05 152.05 4878700 -0.0088 155.547
152.5 155.38 152.26 155.03 155.03 5303400 0.019599 154.489
155.13 155.2 153.7 154.89 154.85 3769200 -0.0009 153.39
155.01 158.19 153.76 158.02 158.02 6250800 0.020208 153.389
158.78 159.97 156.56 157.5 157.5 6016000 -0.00329 153.995
156.62 156.98 150.72 151.03 151.03 7424300 -0.04108 153.826
151.64 154.2 150.12 153.41 153.41 5589900 0.015738 153.947
152.82 152.82 148 150.09 150.09 7142500 -0.02164 153.78
149.76 150.71 148.42 149,41 149.41 5213300 -0.00453 153.483
149.8 150.45 145.8 146.17 146.17 35908200 -0.02169 152.76
146.58 148.26 145.58 147.61 147.61 46278300 0.009852 152.316 156.8167
146.13 147.27 144.25 146.25 146.25 5486500 -0.00921 151.438 156.4267
146.65 150.75 146.65 150.18 150.18 5561300 0.026872 150.967 156.1743
&
% D E F G H]
High Low Close Adj Close Volume Daily Retu 10DMA 30DMA
252 252 252 252 252 251 243 223
224.2454 2179696 221.3673 221.3673 8209865 0.003221 220,502 218.7355
60.91309 58,3029 59.69811 59.69811 4991033 0.023119 57.91529 53.85962
147.27 144,25 146.17 146.17 2160500 -0.001327 150.115 155.069
181.165 177.3625 179.22 179.22 5021075 -0.00813 179.601 176.2238
196,135 192.075 135 195 6643700 0.000924 1594.604 193.716
286.16 275.21 2804775 280.4775 9669375 0.014887 273.6485 271.1253
338.82 331.15 33p.06 336.06 41587400 0.135436 328.205 320.8902

19

Summary

This concludes a basic introduction to the use of the Pandas package for data analysis, similar to the
basic data analysis and manipulations one would perform in Microsoft Office Excel. For more
information about other methods to view and manipulate data in Pandas, please refer to the current
documentation.

Copyright © 2018, Rotman School of Management. 20

https://pandas.pydata.org/pandas-docs/stable/index.html
https://pandas.pydata.org/pandas-docs/stable/index.html

Introduction to the RIT REST API

REST APIs are a way of interacting with an application by sending HTTP requests (like those made
by a web browser) to pre-defined URL endpoints (essentially web addresses) to request information
or perform certain actions. Because the requests are made to URL endpoints, it's possible to use most
programming languages to interact with a REST API, rather than being constrained to the use of only
one language (for example via the VBA or MATLAB specific APIs).

The RIT Client provides a simple REST API to request information about the currently running case,
as well as to submit/cancel trades and accept/decline tender offers. Detailed documentation about
all the available functionality is available, but this tutorial will provide a brief introduction to
interacting with the REST API via Python.

Setting Up Python

The 'requests' package in Python provides a set of methods to make and interact with HTTP requests,
greatly simplifying the process. If you did not download and install it as part of the virtual
environment set up, then run conda install -n <ENV NAME> requests orpip install
requests to download and install it.

Similarly to the Introduction to Python section, the code examples can be saved into .py files in the
working directory and run by entering python <FILE NAME>.py into the prompt.

Basic Use

The basic steps to use the 'requests’ package to interact with the RIT REST API are as follows:

Import the 'requests' package.

Save your API key for easy access.

Create a Session object to manage connections and requests to the RIT client.
Add the API key to the Session to authenticate with every request.

v s W e

Make a request to the appropriate URL endpoint, usually using the get() or post() methods.
o Ingeneral, the base URLis http://localhost:9999/v1/ followed by a method name
and potentially some parameters.
o For example, the /case endpoint would look like http://localhost:9999/v1/case
o0 Or the /orders endpoint would look
like http://localhost:9999/v1l/orders&ticker=CRZY&type=MARKET&quantity=100
&action=BUY, where &ticker=CRZY&type=MARKET&quantity=100&action=BUY are
query parameters specifying a market buy order for 1000 shares of 'CRZY".
6. Check that the response is as expected.
7. Parse the returned data (if applicable) by calling the json() method.

8. Do something with the parsed data.

For example, consider the following example to get the current case status and print out the tick
number (time elapsed in the case). The inline comments match the lines of code with the steps above:

Copyright © 2018, Rotman School of Management. 21

http://rit.306w.ca/RIT-REST-API/

import requests # step 1
API_KEY = {'X-API-key': 'YOUR API KEY HERE'} # step 2

def main():
with requests.Session() as s: # step 3

s.headers.update(API_KEY) # step 4

resp = s.get('http://localhost:9999/vl/case"') # step 5

if resp.ok: # step 6
case = resp.json() # step 7
tick = case['tick'] # accessing the 'tick' value that was returned
print('The case is on tick', tick) # step 8

if __name__ == '_ _main__':
main()

Important Notes

The port in the URL endpoint (9999 in the examples above) may be different, as noted in the
documentation. Users can check what port and API key to use by clicking on the API icon on the
bottom status bar in the RIT client.

Additionally, users can authenticate during an HTTP request by either submitting a header (as in the
examples throughout this tutorial, where the session.headers dictionary is updated to include the API
key), or the API key can be passed directly into the URL as another query parameter
via &key=YOURAPIKEYHERE).

Submitting Orders

Orders can be submitted to the RIT Client by submitting aPOST request to
http://localhost:9999/v1/orders, with the following query parameters:

Parameter Possible Values

ticker* Tickers representing securities in the case
type* ‘MARKET or ‘LIMIT’

guantity* A number; quantity to trade

action* ‘BUY’ or ‘SELL’

price A number; required for ‘LIMIT" orders

Note that parameters with an asterisk are required.

Copyright © 2018, Rotman School of Management. 22

import requests
API_KEY = {'X-API-key': 'YOUR API KEY HERE'}

def main():
with requests.Session() as s:
s.headers.update(API_KEY)
mkt_buy params = {'ticker': 'CRZY', 'type': 'MARKET', 'quantity': 1000,
‘action': 'BUY'}
resp = s.post('http://localhost:9999/vl/orders', params=mkt_buy params)
if resp.ok:
mkt_order = resp.json()
id = mkt_order['order_id']
print('The market buy order was submitted and has ID', id)
else:
print('The order was not successfully submitted!')
if _name__ == '_main__':
main()

The example above shows the steps to submit a market buy order for 1000 shares of 'CRZY". The
order parameters are first saved into a dictionary, and then passed into the post request
using params=mkt_buy_params.

In this example, we also check the response that is returned, to determine whether the order was
successfully submitted (HTTP status code 200) or not, and then parse and return information about
the order if successful.

import requests
API_KEY = {'X-API-key': 'YOUR API KEY HERE'}

def main():
with requests.Session() as s:
s.headers.update(API_KEY)
Imt_sell params = {'ticker': 'CRZY', 'type': 'LIMIT', 'quantity': 2000,
'price': 10.00, 'action': 'SELL'}
resp = s.post('http://localhost:9999/vl/orders', params=1lmt_sell params)
if resp.ok:
Imt_order = resp.json()
id = 1mt_order['order_id']
print('The 1limit sell order was submitted and has ID', id)
else:
print('The order was not successfully submitted!')
if _name__ == '_main__':
main()

The example above shows the steps to submit a limit sell order for 2000 shares of 'CRZY' at a price
0f 10.00. The order parameters are first saved into a dictionary, and then passed into the post request
using params=1mt_sell params.

In this example, we also check the response that is returned, to determine whether the order was

successfully submitted (HTTP status code 200) or not, and then parse and return information about
the order if successful.

Copyright © 2018, Rotman School of Management. 23

Cancelling Orders
Specific orders can be cancelled by order ID, or bulk cancelled by query string to match orders.

import requests
API_KEY = {'X-API-key': 'YOUR API KEY HERE'}

def main():
with requests.Session() as s:
s.headers.update(API_KEY)
order_id = 100 # assuming the order to cancel has ID 100
resp = s.delete('http://localhost:9999/v1l/orders/{}"'.format(order_id))
if resp.ok:
status = resp.json()
success = status['success']
print('The order was successfully cancelled?', success)

if __name__ == '__main__"':
main()

The example above shows how to cancel a specific order by submitting a DELETE request. Notice that
instead of passing a parameter into the request, the order ID has to be added to the end of the URL,
where the {} curly braces are located, by using the format() method.

After the response is returned, it is parsed to check if the order cancellation was successful or not, as
indicated by the value of status['success'].

import requests
API_KEY = {'X-API-key': 'YOUR API KEY HERE'}

def main():
with requests.Session() as s:
s.headers.update(API_KEY)
cancel _params = {'all': @, 'query': 'Price>20.10 AND Volume<®@'} # cancel all
open sell orders with a price over 20.10
resp = s.post('http://localhost:9999/v1/commands/cancel’,
params=cancel_params)
if resp.ok:
status = resp.json()
cancelled = status['cancelled order_ids']
print('These orders were cancelled:', cancelled)

if __name__ == '__main__':
main()
Orders can also be bulk cancelled via a POST request to

http://localhost:9999/v1/commands/cancel. In the example above, the query for
'Price>20.10 AND Volume<0'" would select all open orders with a price above 20.10 and volume less
than 0 (i.e. sell orders).

The response returned will be a list of order IDs for those orders that were cancelled

Other possible query parameters are as follows:

Copyright © 2018, Rotman School of Management. 24

Parameter

Possible Values

all

O or 1;setto 1to cancel all open orders

ticker

Tickers representing securities in the case;
cancels all open orders for the given ticker

ids

Order ids separated by commas

query

A query string to cancel orders that fulfil
the given criteria

Copyright © 2018, Rotman School of Management.

25

Algorithnmic Trading Example — Arbitrage

This example assumes that users are building the arbitrage Python code while connected to the RIT
Client with the ALGO1 case running. By default, the case runs for 300 seconds and there is one
security that is traded on two different exchanges - CRZY_A and CRZY_M.

Before starting, please ensure that the 'requests’ package has been installed in your Python virtual
environment, as described in the Setting Up Python section above. Then, create a new .py file in

your working directory (e.g. algo1.py).

Basic Setup

Similar to the example in the Basic Use section, we will first import the ‘requests’ package as well as
the ‘signal’ and ‘time’ packages in order to create some helpful boilerplate code to handle exceptions
and CTRL+C commands to stop the algorithm. Then, we’ll also save the API key for easy access.

rt signal
[requests
from time import sleep

ption(Exception):

signal_handler(signum, frame):

shutdown
signal.signal(signal.SIGINT, signal.SIG_DFL)
shutdown =

API_KEY = {'X-API-Key': 'YOUR API KEY HERE'}
shutdown =

While there are many other ways to switch on/off the arbitrage algorithm, we will use the current
time (or 'tick') of the simulation case to signal when the algorithm should run. Therefore, we then
need a method to get the current case status and return the current time (or 'tick'). So we create a
helper method to send a GET request to http://localhost:9999 /v1 /case.

We also need a way to get the current bid and ask prices for a given security from the case.

Copyright © 2018, Rotman School of Management. 26

ticker_bid_ask(session, ticker):
payload = { 'ticker': ticker}
resp = session.get(" http:/ [securiti ', params=payload)

if resp.ok:
book = resp.json()
return

raise ApiException(

We can get the market book for a security by submitting a GET request

to http://localhost:9999 /v1 /securities /book, with a query parameter of ticker equal to the ticker.
After checking that the response is 'OK', we then parse the response. Finally, we return the price of
the first bid and price of the first ask as a tuple, as they are sorted in order of competitive price.

We'll now set up the basic set up of a main() method as shown below.

main():
with requests.Session() as s:
s.headers.update(API_KEY)
tick = get_tick(s)
while tick > 5 tick < 295 shutdown:
crzy_m_bid, crzy_m_ask = ticker_bid_ask(s,
crzy a bid, crzy a ask = ticker bid ask(s,

tick = get_tick(s)

if __name == '_ main__ ':

signal.signal(signal.SIGINT, signal handler})
main()

Operationally, when the file is run with python <FILENAME>.py, the get_tick(session) method will be
called to return the current time of the case, and while (a) the time is greater than 5 seconds into the
case and less than 295 seconds into the case, and (b) the 'shutdown'’ flag is false, the code in the while-
loop will run. As the inline comment notes, it's important to update the tick variable at the end of the
loop, so that the algorithm knows whether to continue running the while-loop or not.

Arbitrage Logic
Now that we have the helper methods to request information from the case, we just need to program
the trading logic to check for arbitrage opportunities and submit the appropriate trades. We will

write the trading logic under the ‘while’ command from the main() method to ensure that it only runs
when the case is running.

Copyright © 2018, Rotman School of Management. 27

main():

with requests.Session() as s:
s.headers.update{API_KEY)
tick = get tick(s)
while tick > 5 tick < 295 shutdown:

crzy m _bid, crzy m ask = ticker bid ask(s,
crzy_a bid, crzy_a_ask = ticker_bid_ask(s,

if crzy_m bid » crzy a ask:

if crzy_a_bid > crzy_m_ask:

tick = get_tick(s)
if _ name__

signal.signal(signal.SIGINT, signal handler)
main()

Since ticker_bid_ask() returns both a bid price and an ask price for a particular security, we’ll define
the bid and ask prices for each security using the method.

The two arbitrage opportunities that exist are if the ask price of CRZY_A is less than the bid price of
CRZY_M, or if the ask price of CRZY_M is less than the bid price of CRZY_A. Therefore, we’ll write an
if statement to check the two prices.

If the two prices are ‘crossed’ (i.e. once the if statement condition is satisfied), we’ll submit a pair of
market orders to buy one security at the ask price and to sell the other security at the bid price in
order to capture the arbitrage profit. The corresponding commands are shown below.

1868,

: l1eea,

if crzy a bid > crzy m ask:

', params={'ti

UY'1)

, params={"ti
1600, : SELL'})

In the first case, the algorithm should submit a market order to buy CRZY_A and a market order to
sell CRZY_M. In the second case, the algorithm should submit a market order to buy CRZY_M and a
market order to sell CRZY_A. A sleep() method was implemented after each pair order submission to
ensure a stable execution of orders.

Copyright © 2018, Rotman School of Management. 28

Running the Algorithm

Here’s how the complete algorithmic command should look like:

import signal
requests
time I

signal handler(signum, frame):

shutdown
signal.signal(signal .SIGINT, signal.SIG DFL)
shutdown =

API_KEY = {' API KEY HERE'}
shutdown =

get_tick(session):
resp = session.get(ht
if resp.ok:
case = resp.json
tu case['t
ApiException(

ticker bid ask
payload = { cer
resp = session.get(ht f 'v1/ iti » params=payload)
if resp.ok:
resp.json()

ApiException

main():
with requests.Session() as
s.headers.update(API_K
tick = pet_tick(s)
W tick » 5 tick < 295 shutdown:
1 bid, crzy m ask = ticker bid ask(s, *
crzy_a bid, crzy_a_ask = ticker_bid_ask(s,

if crzy_m bid > cr
', params={"
1))
params={ "ti

SELL'})

', params={'ti
‘D

params={ "ti

if _ name__

signal.signal(signal.SIGINT, signal_handler)
LESTS]

In order to run the algorithm, ensure that the RIT client is connected and the REST API is enabled.
Then, from the working directory, enter python <FILENAME>.py into the prompt. To stop the
algorithm before the case is finished, press CTRL+C. If the file name has any space in it, please enter

python “<FILENAME>.py”

Note: if students make changes to the algorithm's code while it is running in the prompt, those changes

will not be reflected in what is running. Students will have to stop and restart the algorithm.

Copyright © 2018, Rotman School of Management.

	Introduction
	Python/Environment Setup
	Rotman Interactive Trader Install
	Text Editor
	Python Distribution
	Verifying Your Installation
	Python Virtual Environments

	Introduction to Python
	Create a Work Directory
	Hello World
	Hello Input
	Mathematical Expressions
	Tuples, Lists, and Dictionaries
	Summary

	Using Pandas/NumPy Package – Stock Returns Example
	Running the Python Interpreter
	Importing Packages
	Reading In Data From CSV
	DataFrames
	Viewing Data From DataFrames
	Manipulating Data In DataFrames
	Summary

	Introduction to the RIT REST API
	Setting Up Python
	Basic Use
	Important Notes
	Submitting Orders
	Cancelling Orders

	Algorithmic Trading Example – Arbitrage
	Basic Setup
	Arbitrage Logic
	Running the Algorithm

